A dual of MacMahon’s theorem on plane partitions
نویسندگان
چکیده
A classical theorem of MacMahon states that the number of lozenge tilings of any centrally symmetric hexagon drawn on the triangular lattice is given by a beautifully simple product formula. In this paper, we present a counterpart of this formula, corresponding to the exterior of a concave hexagon obtained by turning 120° after drawing each side (MacMahon’s hexagon is obtained by turning 60° after each step).
منابع مشابه
Macmahon’s Partition Analysis Xii: Plane Partitions
MacMahon developed partition analysis as a calculational and analytic method to produce the generating function for plane partitions. His efforts did not turn out as he had hoped, and he had to spend nearly twenty years finding an alternative treatment. This paper provides a detailed account of our retrieval of MacMahon’s original project. One of the key results obtained with partition analysis...
متن کاملA Generalization of Macmahon’s Formula
We generalize the generating formula for plane partitions known as MacMahon’s formula as well as its analog for strict plane partitions. We give a 2-parameter generalization of these formulas related to Macdonald’s symmetric functions. The formula is especially simple in the Hall-Littlewood case. We also give a bijective proof of the analog of MacMahon’s formula for strict plane partitions.
متن کاملElementary Proof of MacMahon’s Conjecture
Major Percy A. MacMahon’s first paper on plane partitions [4] included a conjectured generating function for symmetric plane partitions. This conjecture was proven almost simultaneously by George Andrews and Ian Macdonald, Andrews using the machinery of basic hypergeometric series [1] and Macdonald employing his knowledge of symmetric functions [3]. The purpose of this paper is to simplify Macd...
متن کاملMacmahon’s Partition Analysis Xi: Hexagonal Plane Partitions
In this paper we continue the partition explorations made possible by Omega, the computer algebra implementation of MacMahon’s Partition Analysis. The focus of our work has been partitions associated with directed graphs. The graphs considered here are made up of chains of hexagons, and the related generating functions are infinite products. Somewhat unexpectedly, while the generating functions...
متن کاملShifted Schur Process and Asymptotics of Large Random Strict Plane Partitions
In this paper we define the shifted Schur process as a measure on sequences of strict partitions. This process is a generalization of the shifted Schur measure introduced in [TW] and [Mat] and is a shifted version of the Schur process introduced in [OR1]. We prove that the shifted Schur process defines a Pfaffian point process. We further apply this fact to compute the bulk scaling limit of the...
متن کامل